Convenient Synthetic Routes to α -Oligosiloxanylacrylonitriles

Yuhsuke Kawakami*, Hirofumi Hisada, and Yuya Yamashita Department of Synthetic Chemistry Faculty of Engineering, Nagoya University Chikusa, Nagoya 464, Japan

Abstract: Novel 1,4-elimination reaction of C,N-bis(trimethylsilyl)-Ctrimethylsiloxymethylketenimine and retro Diels-Alder reaction of 2-oligosiloxanyl-5-norbornene-2-carbonitrile cleanly gave α-oligosiloxanylacrylonitriles in excellent yield.

During our studies on vinyl-polymerizable oligosiloxanes, we became interested in α -oligosiloxanylacrylonitriles(I_n). CN CH₂=C(SiMe₂O)_{n-1}SiMe₃ I_n

Such new compounds, representatively α -trimethylsilylacrylonitrile(I₁), might be prepared by several methods. However, several attempts to synthesize I₁, including the reaction of tris(trimethylsilyl)ketenimine with formaldehyde, were unsuccessful. If we consider the intermediate of expected Peterson reaction as CH₂C(CN)SiMe₃, 3-trimethylsiloxypropionitrile might be used as a $O \ominus SiMe_3$

starting material for the synthesis of I_1 . When 3-hydroxypropionitrile was treated with three equivalents of LDA followed by slight excess trimethyl-chlorosilane, C-trimethylsiloxymethyl-C,N-bis(trimethylsilyl)ketenimine(II) was obtained in 75% yield. bp 47.7-48.8 °C/0.15 mmHg. Treatment of II with a Lewis acid in dichloromethane at -78°C cleanly gave the desired compound I_1 in excellent yield.

 $\begin{array}{ccc} \text{Me}_{3}\text{SiOCH}_{2}\text{C=C=NSiMe}_{3} & \begin{array}{c} \text{Lewis Acid} \\ & & \\ &$

	neuccion	01 11.					
No.	Lewis Acid	Yield(%)		No. Lewis Acid		Yield(%)	
		GC	Isol'd			GC	Isol'd
1.	BF3Et20	quant.	88	б.	ZnCl ₂	87	47
2.	AlCl ₃	85	40	7.	MgCl ₂	39	-
3.	AlBr ₃	32	_	8.	cac1 ₂	47	-
4.	FeCl ₃	quant.	_	9.	CuCl ₂	29	-
5.	SnCl ₄	41	-	10.	CuBr	95	-

Table 1. Catalytic Activity of Various Lewis Acids in the 1,4-Elimination Reaction of II.

In order to improve the disadvantage of the reaction (1) that two silicon containing groups were abandoned in the reaction, retro Diels-Alder reaction of 2-trimethylsilyl-5-norbornene-2-carbonitrile was studied(reaction 2).

$$\frac{base}{Me_3SiCl} \qquad SiMe_3 \qquad retro Diels-Alder \qquad I_1 \qquad (2)$$

The reaction proceeded very nicely at 190 °C. Simple purification of the pyrolyzate by short column chromatography gave the products in excellent yields.³⁾ These reactions will find wide applications in the syntheses of α -alkyl substituted acrylonitriles.

Table 2. Retro Diels-Alder Reaction Leading to α -Substituted Acrylonitriles.

No.	Substituent	Yield	Thermolysis	No.	Substituent	Yield	Thermolysis
	at α-carbon	(%)	Temp.(°C)		at α-carbon	(ક)	Temp.(°C)
1.	Me ₃ Si	75	190	6.	Me ₃ SiOSiMe ₂ CH ₂	57	190
2.	Me ₃ SiOSiMe ₂	81	190	7.	сн ₃ сн ₂	60	220
3.	Me ₃ Si(OSiMe ₂) ₂	85	190	8.	C ₆ H ₅	n.r.	_
4.	$Me_3Si(OSiMe_2)_3$	81	190	9.	С ₆ н ₅ Сн ₂	67	220
5.	Me ₃ SiCH ₂	76	190				

This work was partially supported by Grant in Aid for Scientific Research (60550639) from Ministry of Education, Science and Culture.

References

- 1. H. Okada, I. Matsuda, and Y. Izumi, Chem. Lett., 97(1983).
- 2. I. Matsuda, H. Okada, and Y. Izumi, Bull. Chem. Soc. Jpn., <u>56</u>, 528(1983).
- 3. ¹H NMR in $\delta(\text{CDCl}_3)$ values : $I_1 = 0.21(C\underline{H}_3)$, 6.03, 6.40(two d, J=2.4 Hz, vinylidene). $I_2 = 0.09(\text{Si}(C\underline{H}_3)_3)$, $0.26(=-\text{Si}(C\underline{H}_3)_2)$, 6.09, 6.42(two d, J=2.4 Hz, vinylidene). I_3 , $I_4 = 0.05(\text{Si}(C\underline{H}_3)_3)$, $0.09(\text{OSi}(C\underline{H}_3)_2)$, 0.32 (=-Si(C<u>H}_3)_2), 6.17, 6.47(two d, J=2.4 Hz</u>, vinylidene). The products from runs # 5 and 6 in Table 2 show ¹H NMR signals at $0.01(\text{Si}(C\underline{H}_3)_3)$, 1.64 (methylene), 5.34(with long range coupling) and 5.51(vinylidene), and 0.12 (Si(C<u>H</u>_3)_3), 0.22(CH_2Si(C<u>H</u>_3)_2), 1.78(methylene), 5.42(with long range coupling) and 5.62(vinylidene), respectively.

(Received in Japan 14 September 1985)